REFRACTORY SOLUTIONS FOR REHEATING APPLICATIONS

Efficient | Robust | Reliable

WELCOME TO RATH - YOUR REFRACTORY SPECIALIST

RATH develops and produces refractory products and supplies plants all over the world with high quality refractory lining. When customers need reliability and quality, they choose RATH products and services.

DETAILED PLANNING - PERFECT INSTALLATION

We provide solutions for specific requirements by precisely planning, drawing and calculating the equipment in our planning offices. RATH customers receive a standardized construction plan for the equipment, after which the equipment can be installed either by RATH staff or by third-party companies. In many cases, RATH also handles the supervision of installment by third-party staff so that the construction is guaranteed according to RATH's strict quality requirements.

WELL-DESIGNED PRODUCTS THAT COMPLEMENT EACH OTHER

We keep the later assembly capability of the product in mind right from the start of product development. A good example is Rathloc[®], a system in which bricks can be mounted in the simplest way using a standardized push-fit system and always fit perfectly.

RESEARCH, DEVELOPMENT, MANUFACTURING - ALL FROM A SINGLE CAST

Our specialty is refractory materials for temperatures up to 1800°C and for hot gas filtration up to 1000°C. We do all research and development in our own laboratories and produce everything from the base materials to the finished component in our own production facility.

A COMPREHENSIVE PORTFOLIO

- Dense fire bricks
- Monolithics

2

- Pre-cast blocks
- Insulating fire bricks
- High-temperature insulating wool
- Vacuum-formed shapes

CUSTOMIZED SOLUTIONS ARE OUR SPECIALTY

We make no compromises in adapting the refractory lining to the plant design. We can do this because we focus on customized planning and production. Each part is pre-engineered in the CAD system and checked for fit so everything runs smoothly on the construction site.

RATH COVERS A WIDE RANGE OF PLANTS FOR IRON AND STEEL PRODUCTION.

- Bogie hearth forging furnace
- Chamber forging furnace
- Rotary hearth furnace
- Bogie hearth furnace
- Chamber annealing furnace
- Top-hat furnace
- CSP roller furnace
- Walking beam furnace
- Pit furnace
- Conveyor belt compensation
- Hardening furnace

THE FULL-RANGE PROVIDER FOR THE METAL INDUSTRY

Provision of a solid refractory lining does not start with ordering material and does not end with delivery of the material to the plant manufacturer or user. A complete solution includes professional selection of materials, solid construction, quality-focused delivery and efficient project management.

With expertise and years of hands-on experience, our project managers worldwide ensure the execution and coordination of refractory linings for iron and steel smelting. This means RATH customers have a reliable partner for refractory plants with a comprehensive service portfolio.

5

ENGINEERING

The basis of every lining concept is the heat transfer, which will determine the optimum wall structure. Extensive knowledge of thermal and corrosive loads is required. We use modern heat transfer calculation programs and software systems to calculate thermodynamic equilibriums and phase diagrams. We, as a manufacturer, have access to extensive databases, which are required for the calculations.

Upon request, we are also able to carry out economic calculations of refractory linings, taking material and energy costs into account, which provides customers with the support they need to make decisions.

MATERIAL SUPPLY

RATH material is made to order for customers and according to the agreement, with experienced shipping companies delivering directly to the construction site. No matter where in the world the construction site is, our logistics experts ensure reliable and punctual delivery.

ASSEMBLY MONITORING / SUPERVISION

RATH also handles assembly supervision in many cases with regard to assembly by third-party companies so that the construction is guaranteed according to RATH'S strict quality requirements.

ASSEMBLY

Refractory linings of liquid steel plants require expert on-site assembly. Our highly trained assembly staff ensure reliable installation and attach great importance to high safety standards. This includes continuous monitoring of construction sites by experienced installation directors. We attach great importance to high quality assembly equipment and assembly aids to ensure effective and quality delivery.

MAINTENANCE AND REPAIR

We monitor the performance of your refractory lining and provide the necessary maintenance to ensure safe operation of the equipment.

We also offer ongoing predictive maintenance and repair.

BOGIE HEARTH FORGING FURNACE

Bogie hearth forging furnaces are of key importance in the smelting process. The intermittent operation, various grades of steel to be treated individually and the various process techniques require mechanical resilience and chemical resistance of the refractory materials.

Due to the optimum mixture of heavy and light lining on the one hand, we meet extremely high demands in terms of wear and, on the other hand, we supply a modern, energy-efficient refractory lining.

CONCRETES

CARATH 1460D CARATH 1550LC-10 CARATH A58LC CARATH B1652LC CARATH FL 1250 CARATH FL 1401 CARATH FL 1500

6

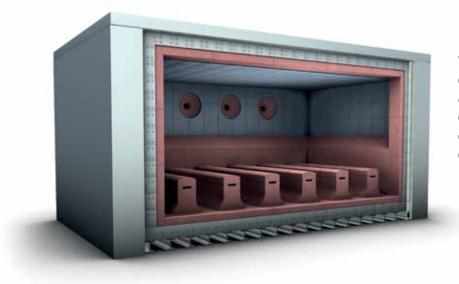
INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 25-10 PORRATH FL 28-09 PORRATH FL 30-11

HIGH TEMPERATURE

ALSITRA MAT 1400 ALSITRA MOD 14/200 ALTRA MAT 72 ALTRA MOD 72/140 KOMBI MOD 72/14

VACUUM-FORMED PRODUCTS


KERFORM KVF 121
KERFORM KVS 121
KERFORM KVF 141
KERFORM KVS 141
KERFORM KVS 164

RATH

CHAMBER FORGING FURNACE

Chamber forging furnaces are operated intermittently at up to 1350°C. The refractory lining is mechanically stressed due to the loading method.

Whether a single chamber or double chamber furnace is involved, with automated or manual loading and different designs, RATH has the experience and expertise needed to make the right choice of materials in every area.

CONCRETES

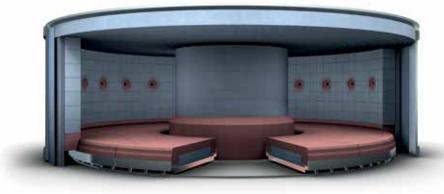
CARATH 1460D CARATH 1550LC-10 CARATH A58LC CARATH B1652LC CARATH FL 1250 CARATH FL 1401 CARATH FL 1500

INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 25-10 PORRATH FL 28-09 PORRATH FL 30-11

HIGH TEMPERATURE

ALSITRA MAT 1400 ALSITRA MOD 14/200 ALTRA MAT 72 ALTRA MOD 72/140 KOMBI MOD 72/14


VACUUM FORMED SHAPES

KERFORM KVF 121
KERFORM KVS 121
KERFORM KVF 141
KERFORM KVS 141
KERFORM KVS 164

ROTARY HEARTH FURNACE

Rotary hearth furnaces are operated continuously and are used to heat a wide variety of components. Drawing temperatures up to 1350°C and differently arranged burner technologies require experience to make the right choice in materials.

Whether heavy lining with concrete moldings and dense fire bricks is involved, or energy-efficient lining with modules made of high-temperature insulation wool, and depending on the customer's requirements, the best solution is developed by our engineering team and implemented on the construction site.

CONCRETES

CARATH 1460D CARATH 1550LC-10 CARATH A58LC CARATH A58LC- BT CARATH B1652LC CARATH B1652LC- BT CARATH FL 1250 CARATH FL 1401 CARATH FL 1500

DENSE FIRE BRICKS

DURRATH HS SILRATH AK60

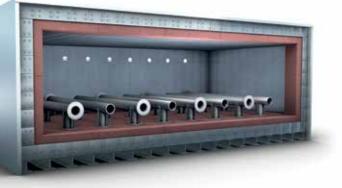
INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 25-10 PORRATH FL 28-09

HIGH TEMPERATURE INSULATION WOOL

ALSITRA MAT 1400 ALSITRA MOD 14/200 ALTRA MAT 72 ALTRA MOD 72/140 KOMBI MOD 72/14

VACUUM FORMED SHAPES


KERFORM KVF 121 KERFORM KVS 121 KERFORM KVF 141 KERFORM KVS 141 KERFORM KVS 164

BOGIE HEARTH FURNACE / CHAMBER ANNEALING FURNACE

Bogie hearth furnaces for heat treatment must be energy efficient on the one hand, and on the other, they must meet the mechanical requirements in the car sector.

Our proven module lining of high-temperature insulation wool for walls and ceilings and abrasion-resistant fired concrete lining suitable for cars or floors has been successfully implemented countless times in order to offer our customers long service life.

CONCRETES

CARATH 1460D CARATH 37 MC CARATH FL 1250 CARATH FL 1401

INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 25-10

HIGH TEMPERATURE INSULATION WOOL

ALSITRA MAT 1300 ALSITRA MAT 1400 ALSITRA MOD 14/200 ALSITRA MOD 13/180

VACUUM FORMED SHAPES

KERFORM KVF 121	
KERFORM KVS 121	
KERFORM KVF 141	
KERFORM KVS 141	

STRIP GALVANIZING PLANT

Hot-dip galvanizing is a vertical form of strip galvanizing, in which furnace temperatures of up to 1350°C can be reached. Different parts of the installation require a very wide range of different qualities in the refractory lining.

The direct-fired section uses high-quality polycrystalline high-temperature insulation wool and fire bricks to withstand the temperatures and chemical attack. Other materials used include ALSITRA high temperature insulation wool products, refractory concretes, and lightweight refractory bricks.

CONCRETES

CARATH 1650 D CARATH L FL1401

INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 25-10 PORRATH FL 28-09 PORRATH FL 30-11

HIGH TEMPERATURE INSULATION WOOL

ALSITRA MAT 1400 ALSITRA MOD 14/200 ALTRA MAT 72 ALTRA MOD 72/140 KOMBI MOD 72/14

VACUUM FORMED SHAPES

ALTRAFORM® KVF 161 KERFORM KVS 141

TOP-HAT FURNACE

Top-hat furnaces are used for heat treatment of various steel parts up to 1150°C. The light lining of high-temperature insulation wool of the hood is essential so that it can be manipulated.

Suitable abrasion-resistant, fire-resistant concrete for the base and a sophisticated sealing system between the hood and the base are also important components for this type of installation.

Movable hood with electric heating

CONCRETES

CARATH 1460D

CARATH 37 MC

INSULATING **FIRE BRICKS**

PORRATH FL 24-06

CARATH FL 1250 CARATH FL 1401

PORRATH FL 25-10

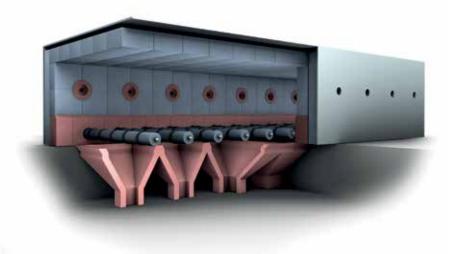
HIGH TEMPERATURE INSULATION WOOL

ALSITRA MAT 1300 ALSITRA MAT 1400 ALSITRA MOD 14/200 ALSITRA MOD 13/180

VACUUM FORMED SHAPES

KERFORM KVF 121 KERFORM KVS 121 KERFORM KVF 141 KERFORM KVS 141

HEATING COIL CARRIER BRICK


Component A 58 LC

CSP ROLLER FURNACE

ALTRA roller insulation pre-assembled at the factory

The CSP furnace, an integral part of the rolling line, heats slabs directly from the continuous casting plant to temperatures of up to 1300°C. The combination of concrete moldings and vacuum moldings in the roller area ensures mechanical resistance in the furnace chamber on the one hand, and on the other, perfect sealing of the roller bushing.

The sub-furnace is made of dense fire bricks and high-quality, abrasion-resistant refractory concrete to ensure a lining with long-lasting resistance. Above the roller area, high temperature products are used. The highest priority of a CSP roller furnace is its availability, which we know and ensure through experience and the needs of our customers.

CONCRETES

CARATH 1460 D CARATH FL1401 CARATH FL1250 CARATH FL1401 component

DENSE FIRE BRICKS

SILRATH AK60

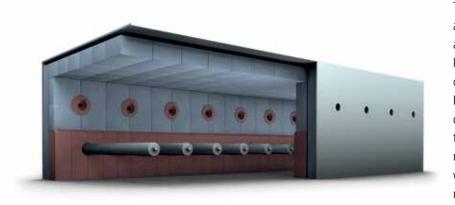
INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 28-09 PORRATH FL 26-08

HIGH TEMPERATURE INSULATION WOOL

ALTRA MAT 72 KOMBI MOD 72/14 ALSITRA MOD 14/200 ALSITRA MAT 1400

VACUUM FORMED SHAPES


KERFORM KVS 121 KERFORM KVS 141 KERFORM KVS 141 -Roll brick

ROLLER FURNACE

The roller furnace, a type of continuous furnace, is primarily used to heat slabs or strips in a continuous production process at temperatures up to 1150°C.

The heat treatment can be carried out with or without protective gas.

The combination of precast concrete parts and vacuum formed shapes in the roller area ensures mechanical resistance in the kiln chamber on the one hand, and on the other, a perfect seal of the roller passage. Depending on the requirements, we use dry-pressed bricks or insulating fire bricks for the area under the kiln, and products made of high-temperature insulation wools are used above the roller area. The mix guarantees an optimal energy balance.

CONCRETES

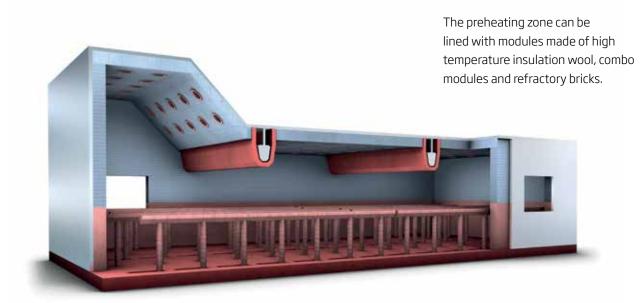
CARATH 1460D CARATH 1460D -component CARATH 37 MC -component CARATH FL 1401 CARATH FL 1401 -component

INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 28-09

HIGH TEMPERATURE

ALSITRA MAT 1300 ALSITRA MAT 1400 ALSITRA MOD 14/200 ALSITRA MOD 13/180


VACUUM FORMED SHAPES

KERFORM KVS 121 KERFORM KVS 141 KERFORM KVS 141 -Roll brick

WALKING BEAM FURNACE/ WALKING HEARTH FURNACE

A walking beam furnace is used to heat slabs and billets at temperatures up to 1350°C. The refractory lining is equipped with plastic compounds, dense fired concretes and abrasion-resistant, low-cement fireclay concretes.

CONCRETES

CARATH 48 MC STR CARATH 1655 LC CARATH A58 LC CARATH FL1401 CARATH PLAST 1550 CARATH 1550 LC CARATH B 1652 LC

DENSE FIRE BRICKS

DURRATH HS SILRATH AK60

INSULATING FIRE BRICKS PORRATH FL 24-06

PORRATH FL 25-10 PORRATH FL 28-09

HIGH TEMPERATURE

ALSITRA MAT 1300 ALSITRA MAT 1400 ALTRA MAT 72 KOMBI MOD 72/14

VACUUM-FORMED PRODUCTS

KERFORM KVS 121 KERFORM KVS 141

PIT FURNACE

A pit furnace is used to heat special types of steel at temperatures up to 1350°C. The refractory lining is equipped either with suitable abrasion-resistant dense refractory bricks or with mechanically resistant lowcement fireclay concretes.

> The mobile covers can be supplied with combo modules or modules made of ALTRA high temperature insulation wool.

CONCRETES

CARATH 47 A LC CARATH A 58 LC CARATH T 86 M ULC CARATH FL 1401

DENSE FIRE BRICKS

ALURATH B80 SILRATH AK70

INSULATING FIRE BRICKS

PORRATH FL 25-10 PORRATH FL 28-09

HIGH TEMPERATURE INSULATION WOOL

ALSITRA 1400 ALSITRA MOD 14/200 KOMBI MOD 72/14 ALTRA MAT 72

HARDENING FURNACE

Different furnace atmospheres and temperatures require a wide mix of materials when it comes to these types of furnaces. With our comprehensive and complete product range, as well our own production, we can always ensure the right material selection.

CONCRETES

CARATH 1460 D CARATH 52 MC R/10 DENSEFIRE BRICKS

SILRATH AK60 SUPRATH A403-t SUPRATH T501

INSULATING FIRE BRICKS

PORRATH FL 24-06 PORRATH FL 25-10 PORRATH FL 26-08

HIGH TEMPERATURE INSULATION WOOL

ALSITRA MAT 1300 ALSITRA MAT 1400 CALSITRA MAT 1250 CALSITRA MOD 1250 ALSITRA MOD 13/180

VACUUM FORMED SHAPES

EVAC EVS KERFORM KVF 121 KERFORM KVS 121 KERFORM KVF 141 KERFORM KVS 141

PRODUCTS

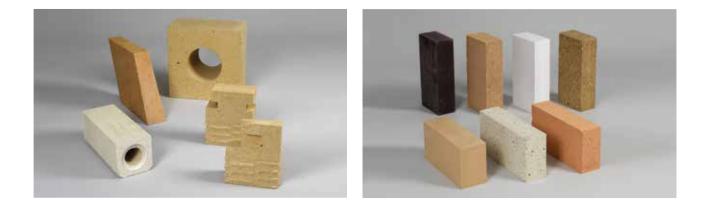
Special products, a variety of individual geometries made of dense fire bricks, insulating fire bricks, vacuum moldings, as well as prefabricated concrete elements, play an important role in the lining of the various furnaces. RATH supplies the latter as burner bricks, quarl bricks, furnace components, cover parts or tunnel furnace car parts.

CARATH

TROCKER LADERNISTORE WA DRY PLACE

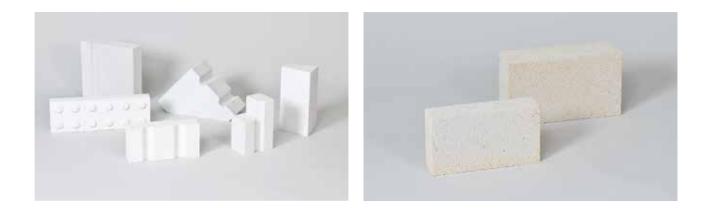
RATH

PORRATHIN HT


MONOLITHICS

NAME		CARATH T 86 M ULC	CARATH 1460 D	CARATH 1550 LC-10	CARATH 1650 D-3	CARATH 1655 LC	CARATH 37 MC
Raw material base		Tabular clays, mullite	Low iron, high alu- mina raw materials	Clay rich raw materials	Corundum, mullite	Andalusite	Refractory clay
Type of install	lation	vibrate	vibrate	vibrate	vibrate	vibrate	vibrate
Max. operating temperature [°C]		1750	1400	1550	1600 1650		1320
Material requirements [kg/m³]		3060	2250	2520	2680	2550	2230
Cold pressure at 110 °C [in N		35	55	90 38		75	90
Grain size [mn	n]	0-6	0-10	0-10	0-3	0-6	0-6
Chemical	Al ₂ O ₃	86.5	52	58	79	63	37
analysis [%]	SiO ₂	10.5	38	35	16	34	51
	Fe ₂ O ₃	0.4	1	1.2	0.4	0.8	2.4
	CaO	0.4	4.6	2.4	3.5	-	4.4

NAME		CARATH 47 A LC	CARATH 48 MC str	CARATH 52 MC R/10	CARATH A 58 LC	CARATH B 1652 LC
Raw material base		Dense refractory clay with andalusite additive	Refractory clay	Low iron mullite refractory clay	Andalusite	Bauxite
Type of install	ation	vibrate	vibrate	vibrate	vibrate	vibrate
Max. operating temperature [1500	1400	1500 1650		1620
Material requi [kg/m ³]	rements	2380	2360	2440 2590		2950
Cold pressure at 110 °C [in N		90	120 100		60	115
Grain size [mm	ו]	0-6	0-6	0-10	0-6	0-6
Chemical	Al ₂ O ₃	47	49	52	58	84
analysis [%]	SiO ₂	46	42	42	38	10
	Fe ₂ O ₃	1.3	1.4	0.8	0.9	1
	CaO	2.7	4.5	3.1	1.9	1.5


NAME		CARATH FL 106	CARATH FL 1250	CARATH FL 1401	CARATH FL 1500	
Raw material	base	Lightweight aggregates	Lightweight refractory clay	Lightweight refractory clay	Low iron mullite refractory clay	
Type of install	ation	cast- poke	cast- poke	cast- poke	cast- poke	
Max. operatin temperature [1000	1250	1400	1500	
Material requi [kg/m³]	rements	600	1600	1520	1750	
Cold pressure at 110 °C [in N		0.7	15	24	9	
Grain size [mn	n]	0-4	0-8	0-8	0-5	
Chemical	Al ₂ O3	27	37	46	64	
analysis [%]	SiO ₂	27	46	34	30	
	Fe ₂ O ₃	12	6	3.5	0.6	
	CaO	22	7.7	11	4.5	
	MgO	6	=	-	-	

DENSE FIRE BRICKS

NAME		ALURATH B80	DURRATH HS	SILRATH AK60	SILRATH AK70	SUPRATH A403-T	SUPRATH T503
Raw material base		Bauxite	Refractory clay	Andalusite	Andalusite	Mullite rich refractory clay	Mullite rich refractory clay
Raw density [g/cm ³]		2.75	2.3	2.58	2.70	2.3	2.3
Open porosity (%vol)		18	14	14	15	16	19
Cold compression stre [MPa]	ngth	100	70	100	100	50	50
Refractoriness unde T ₀₅ [0,20 MPa]	er load	1510	1390	1600	1650	1450	1470
	Al ₂ O ₃	80	40	60	70	49	53
Chemical analysis [%]	SiO,	12	50	37	28	46	43
alialysis [70]	Fe ₂ O ₃	1.6	1.6	1	0.8	1.1	1.1
Extra properties Extra information				Good chemical resistance, very good thermal shock resistance, abrasion-resis- tant	Very good hot strength and thermal shock resistance, abra- sion-resistant		
Thermal	800°C	1.92	1.30	2.02	1.80	1.60	1.50
conductivity [W/mK] Hot wire (cross) procedure ISO 8894-1	1000°C	2.00	1.37	2.12	2.00	1.60	1.60
	1200°C	2.11	1.46	2.32	2.30	1.60	1.80
150 005 1 1	1400°C	2.23	1.54	2.64	_	-	2.00

INSULATING FIRE BRICKS

NAME		PORRATH FL 24-06	PORRATH FL 25-08	PORRATH FL 25-10	PORRATH FL 26-08	PORRATH FL 28-09	PORRATH FL 28-10	PORRATH FL 30-11
Raw material	base	Aluminum silicate	Aluminum silicate	Aluminum silicate	Aluminum silicate	Aluminum silicate	Aluminum silicate	Aluminum silicate
Classificatior temperature		1350	1380	1400	1430	1540	1540	1650
ASTM group		-	-	-	26	28	28	30
Raw density	[g/cm³]	0.64	0.8	1.0	0.8	0.9	1.0	1.1
Cold compres strength [MP		1.2	4	8	3.5	4	5	5
Permanent le change [%]	ength	1320 °C/ 12 h -0.7	1320 °C/ 12 h -0.9	1320 °C/ 12 h -0.9	1400 °C/12 h -0.5	1510 °C/12 h -0.7	1510 °C/12 h -0.5	1620 °C/12 h -1.1
Chemical	Al ₂ O ₃	37	38	40	52	63	66	72
analysis	SiO ₂	56	55	54	44	31	31	27
[%]	Fe ₂ O ₃	1.9	2.2	2.3	1.1	0.8	0.8	0.3
Thermal	200°C	-	-	-	-	-	-	_
conductivity	400°C	-	-	-	-	-	-	-
[W/mK]	600°C	0.28	0.36	0.42	0.36	0.38	0.42	0.44
(Hot wire	800°C	0.32	0.41	0.46	0.39	0.40	0.44	0.46
procedure) DIN EN 993-14	1000°C	0.38	0.47	0.50	0.43	0.43	0.47	0.51
	1200°C	0.43	0.50	0.54	0.48	0.47	0.50	0.58

HIGH-TEMPERATURE INSULATION WOOL

PROPERTIES		ALSITRA MAT 1300	ALSITRA MAT 1400	ALSITRA MOD 1300	ALSITRA MOD 1400	ALTRA MAT 72	ALTRA MOD 72	COMBO MOD 97
Raw material b	Raw material base		Alumina, alumi- num silicate	Aluminum silicate	Aluminum silicate	Aluminum silicate	Aluminum silicate	Mullite, aluminum silicate
Classification temperature [°C]	1300	1400	1300	1400	1650	1650	1450
Continuous use temperature [°C]		< 1150	< 1250	< 1150	< 1250	1600	< 1650	< 1400
Raw density [k	g/m³]	128	128	130	130	128	100-180	140/180
Thermal	400°C	0.11	0.11	0.07	0.07	0.09	-	-
conductivity	600°C	0.15	0.15	0.1	0.1	0.13	-	-
[W/mK] (Hot wire procedure) DIN EN 993-14	800°C	0.21	0.21	0.14	0.14	0.19	-	-
	1000°C	0.31	0.31	0.19	0.19	0.28	-	-
	1200°C	0.44	0.44	0.26	0.26	0.41	0.42	0.42
	1400°C	-	0.64	0.33	0.33	0.61	-	-

VACUUM-FORMED SHAPES

PROPERTIES (dried)		KERFORM KVS 161	ALTRAFORM KVS 164-301	EVAC EVS 131	KERFORM KVF 121	KERFORM KVF 141	KERFORM KVS 121	KERFORM KVS 141
Raw material base		Aluminum silicate wool	Aluminum silicate wool / polycrystalline wool	Earth alkali silicate wool	Aluminum silicate wool, Altra	Aluminum silicate wool, Altra	Aluminum silicate wool	Aluminum silicate wool
Classification temperat	ure [°C]	1600	1600	1300	1250	1400	1250	1400
Continuous application [°C]	temperature	1500	1500	1280	1150	1300	1150	1300
Bulk density [kg/m³]		300	300	320	> 160	> 160	300	300
Permanent length change [%]	900 °C/24 hrs.	-	-	-	-1.0	-	-	-
DIN EN 1094-6	1000°C/24 hrs.	-	-	-1.8	-2.0	-1.0		
	1100 °C/24 hrs.	-	-	-3	-3.0	-2.0	-2.9	-1.6
	1250 °C/24 hrs.	-	-	-	-	-3.0	-3.7	-2.5
	1300 °C/24 hrs.	_	_	-3.9		_		-3.7
	1400 °C/24 hrs.	-2.0	-1.0	-	-	-	-	-
	1500 °C/24 hrs.	-2.0	-1.0	-		_	_	-
	1600 °C/24 hrs.	-3.0	-2.1	-	-	-	-	-
	Al ₂ O ₃	65	28	2	46	48	50	55
Chemical analysis [%] DIN EN 955-2; 4	SiO ₂	34	20	76	53	52	49	44
after burnout	CaO / MgO	-	-	22	-	-	-	_
	ZrO ₂	-	51	-	-	-	-	_
Thermal conductivity	200 °C	-	-	0.09	-	-	0.09	
[W/mK]	400 °C	0.17	0.12	0.12	0.07	0.07	0.12	0.12
(Hot wire procedure)	600 °C	0.18	0.13	0.16	0.12	0.12	0.15	0.15
DIN EN 993-14	800 °C	0.20	0.15	0.21	0.18	0.18	0.19	0.19
	1000 °C	0.26	0.18	0.29	0.25	0.25	0.25	0.24
	1200 °C	0.34	0.23	0.37	0.35	0.35	0.35	0.31
	1400 °C	0.44	-	-	-	0.48	-	0.40

INDUSTRIES AND APPLICATIONS

Forging furnace

Glass production

Aluminum melting furnace

Thanks to their many projects, RATH employees have a great deal of experience and knowledge that they contribute to the development and planning of refractory linings.

RATH HAS EXPERIENCE AND EXPERTISE IN SPECIFIC INDUSTRIAL APPLICATIONS

Metal-processing industry

- Metallurgical
- heating furnaces - Heat treatment furnaces
- Aluminum
- smelting furnaces - Direct reduction plants
- Hot-gas filtration

engineering - Carbon black - Biomass

reactors - Reformers and

Petrochemistry,

chemistry

- cracking furnaces - Chlorine reactors
- Sulfur extraction plants

Special furnace

- Laboratory

furnaces

- Fluidized bed - Hot-gas filtration

- Rotary kilns

tion

Energy &

environmental

firing systems

grate stoker

furnaces

reactors

- Wood distillation,

- Hot-gas genera-

- plants
- Waste incineration
- Heat exchangers
- Hot-gas filtration

Glass industry

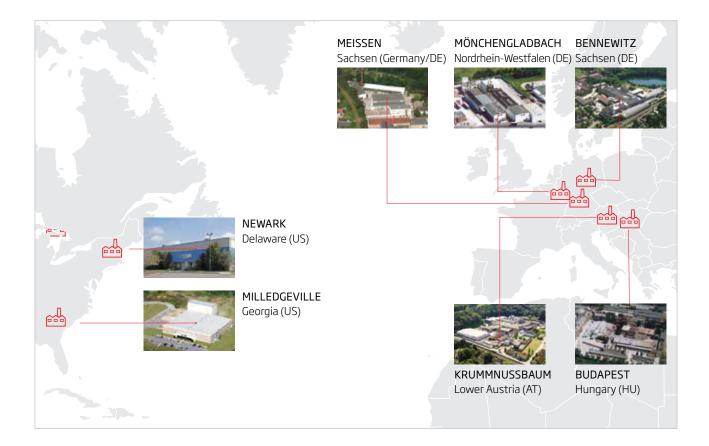
Tiled stoves and domestic fireplaces

- Complete oven systems
- Biological combustion chamber plus
- Flue systems - Combustion
- chamber linings
- Inspection window doors
- Mortars and adhesives

Ceramic industry

construction

- Technical ceramics, sanitary ceramics, pottery ceramics,
- refractory ceramics
- Tunnel kilns
- Rotary furnaces
- Hood-type furnaces
- Regenerator chambers
- Melting ends - Dental furnaces - Working ends - Analytic devices


 - Forehearths
 - Basins for glass processing

IN-HOUSE MANUFACTURING AT HIGHEST QUALITY LEVEL

Seven production sites in Europe and America are constantly exchanging information about manufacturing procedures to guarantee best products.

Quality at Rath is not just a buzz-word but a vivid corporate culture. Each individual employee strives for the best solution and does not give up until it is achieved.

RATH GROUP

OUR SALES OFFICES

AUSTRIA RATH AG Walfischgasse 14 A-1015 Vienna

T: +43(1)5134427-0 F: +43 (1) 513 44 27-2187

AUG. RATH JUN. GMBH Hafnerstrasse 3 A-3375 Krummnussbaum T: +43 (2757) 2401-0 F: +43 (2757) 2401-2286

RATH FILTRATION GMBH Walfischgasse 14 A-1015 Wien T +49 (3521) 46 45-10

HUNGARY RATH HUNGARIA KFT. Porcelán utca 1 H-1106 Budapest T: +36 (1) 433 00 40 F: +36 (1) 261 90 52

POLAND RATH POLSKA SP. Z O.O. ul. Budowlanych 11

PL-41 303 Dąbrowa Górnicza T: +48 (32) 268 47-01

- F: +48 (32) 268 47-02

GERMANY RATH GMBH Ossietzkystrasse 37/38 D-01662 Meissen T: +49 (3521) 46 45-0

F: +49 (3521) 46 45-88

Krefelder Strasse 680-682 D-41066 Mönchengladbach T: +49 (2161) 96 92-0 F: +49 (2161) 96 92-61

Leulitzer Strasse 6A D-04828 Bennewitz T: +49 (3425) 89 48-0

F: +49 (3425) 89 48-4313

CZECH REPUBLIC RATH ŽÁROTECHNIKA SPOL. S.R.O. Vorlesská 290

CZ-544 01 Dvůr Králové n. L. +420 (499) 32 15 77 T: +420 (499) 32 10 03 F:

UKRAINE RATH UKRAINA wul. Kosmitschna 49 B

49040 Dnepropetrowsk Т +380 (56) 785-30-35 F

+380 (56) 785-30-36

USA

RATH USA INC. 290 Industrial Park Drive Milledgeville, GA 31061, USA T: +1 (478) 452 00-15 F: +1 (478) 452 00-70

300 Ruthar Drive Suite 1 Newark, DE 19711, USA T: +1 (302) 294 44-46 F: +1 (302) 294 44-51

MEXICO

RATH GROUP S. DE R. L. DE C.V. Av. Adolfo Ruiz Cortines #2700-14 Col. La Esperanza CP 67192, Guadalupe N.L. Mexico T: +52 81 14 31 15 90

decisions based on the displayed information remain the responsibility of the decision maker. RATH GROUP accepts no liability for printing errors, mistakes and changes.

All the information displayed above is just for your orientation and is not legally or technically binding. All presented figures of properties are not valid for calculation of industrial facilities. Any